Predicting Diffractive ρ and φ Production using Light-Front Holographic Wavefunctions

William Woodley

Supervisors: Dr Mohammad Ahmady (Mount Allison University) Dr Abdelhaq Hamza (University of New Brunswick) Dr Ruben Sandapen (Acadia University)

Mount Allison UNIVERSITY

Outline

Introduction The Standard Model Collider Physics

Modelling the Reaction The Vector Meson The Photon The Dipole-Proton

The Physical Observables

Python Fits

R Program

Results

Conclusion

The Standard Model Collider Physics

Modelling the Reaction The Vector Meson The Photon The Dipole-Proton

The Physical Observables

Python Fits

R Program

Results

Conclusion

Introduction

- <u>Purpose</u>: to predict vector meson production cross sections for φ mesons by modelling the φ meson with a light-front holographic wavefunction.
- How can elementary particles be detected?
- Use collision experiments where particles are collided into one another and the results are observed.
- Infer properties from conservation laws.
- For example: deep inelastic scattering

The Standard Model Collider Physics

Modelling the Reaction The Vector Meson The Photon The Dipole-Proton

The Physical Observables

Python Fits

R Program

Results

Conclusion

Introduction

PHYSICAL REVIEW D 94, 074018 (2016)

Diffractive ρ and ϕ production at HERA using a holographic AdS/QCD light-front meson wave function

Mohammad Ahmady^{*} Department of Physics, Mount Allison University, Sackville, New Brunswick E4L 1E6, Canada

Ruben Sandapen[†] Department of Physics, Acadia University, Wolfville, Nova Scotia B4P 2R6, Canada and Department of Physics, Mount Allison University, Sackville, New Brunswick E4L 1E6, Canada

Neetika Sharma[‡]

Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, S.A.S. Nagar, Mohali-140306, Punjab, India (Received 26 May 2016; published 13 October 2016)

We use an anti–de Sitter/quantum chromodynamics holographic light-front wave function for the ρ and ϕ mesons, in conjunction with the color glass condensate dipole cross section whose parameters are fitted to the most recent 2015 high precision HERA data on inclusive deep inelastic scattering, in order to predict the cross sections for diffractive ρ and ϕ electroproduction. Our results suggest that the holographic meson light-front wave function is able to give a simultaneous description of ρ and ϕ production data provided we use a set of light quark masses with $m_{u,d} < m_s \approx 0.14$ GeV.

DOI: 10.1103/PhysRevD.94.074018

The Standard Model Collider Physics

Modelling the Reaction The Vector Meson The Photon The Dipole-Proton

The Physical Observables

Python Fits

R Program

Results

Conclusion

Introduction

• If the electron's de Broglie wavelength is too long, it will not resolve the proton.

The Standard Model Collider Physics

Modelling the Reaction The Vector Meson The Photon The Dipole-Proton

The Physical Observables

Python Fits

R Program

Results

Conclusion

Introduction

 By increasing the momentum, the de Broglie wavelength will decrease, making the proton resolvable. Therefore, high energies are needed for collision experiments.

(/)//) $\lambda = -\frac{h}{2}$

Modelling the Reaction The Vector Meson The Photon The Dipole-Proton

The Physical Observables

Python Fits

R Program

Results

Conclusion

The Standard Model

- The model used to describe elementary particle physics
- Three fundamental forces:
 - The electromagnetic force (quantum electrodynamics)
 - The strong force (quantum chromodynamics)
 - The weak force (weak interactions)
- Two types of particles:
 - Fermions
 - Bosons

Modelling the Reaction The Vector Meson The Photon The Dipole-Proton

The Physical Observables

Python Fits

R Program

Results

Conclusion

The Standard Model

- Bosons mediate forces (aside from the Higgs boson).
- Fermions are further divided into quarks and leptons:

Modelling the Reaction The Vector Meson The Photon The Dipole-Proton

The Physical Observables

Python Fits

R Program

Results

Conclusion

The Standard Model

- Bosons mediate forces (aside from the Higgs boson).
- Fermions are further divided into quarks and leptons:

Modelling the Reaction The Vector Meson The Photon The Dipole-Proton

The Physical Observables

Python Fits

R Program

Results

Conclusion

Quantum Chromodynamics

• Quarks can interact via the strong force, mediated by gluons. Ascribe a property called colour charge to every quark and gluon.

Modelling the Reaction The Vector Meson The Photon The Dipole-Proton

The Physical Observables

Python Fits

R Program

Results

Conclusion

Quantum Chromodynamics

- Quarks can be red, green, or blue.
- Only colour singlet states have been observed in nature. Quarks can bind to other quarks in two ways to form colour singlet states:

Modelling the Reaction The Vector Meson The Photon The Dipole-Proton

The Physical Observables

Python Fits

R Program

Results

Conclusion

Vector Mesons

 Vector mesons are mesons with spin 1 and parity -1 (they transform like vectors under parity transformations).

Modelling the Reaction The Vector Meson The Photon The Dipole-Proton

The Physical Observables

Python Fits

R Program

Results

Conclusion

Vector Mesons

- ρ^0 mesons are a superposition of $u\bar{u}$ and $d\bar{d}$.
- φ mesons are ss.

The Standard Model Collider Physics

Modelling the Reaction The Vector Meson The Photon The Dipole-Proton

The Physical Observables

Python Fits

R Program

Results

Conclusion

The Standard Model Collider Physics

Modelling the Reaction The Vector Meson The Photon The Dipole-Proton

The Physical Observables

Python Fits

R Program

Results

Conclusion

The Standard Model Collider Physics

Modelling the Reaction The Vector Meson The Photon The Dipole-Proton

The Physical Observables

Python Fits

R Program

Results

Conclusion

The Standard Model Collider Physics

Modelling the Reaction The Vector Meson The Photon The Dipole-Proton

The Physical Observables

Python Fits

R Program

Results

Conclusion

The Standard Model Collider Physics

Modelling the Reaction The Vector Meson The Photon The Dipole-Proton

The Physical Observables

Python Fits

R Program

Results

Conclusion

Collider Physics

σ

p

e⁻

The Standard Model Collider Physics

Modelling the Reaction The Vector Meson The Photon The Dipole-Proton

The Physical Observables

Python Fits

R Program

Results

Conclusion

The HERA Experiments

The Standard Model Collider Physics

Modelling the Reaction The Vector Meson The Photon The Dipole-Proton

The Physical Observables

Python Fits

R Program

Results

Conclusion

The HERA Experiments

The Standard Model Collider Physics

Modelling the Reaction The Vector Meson The Photon The Dipole-Proton

The Physical Observables

Python Fits

R Program

Results

Conclusion

The HERA Experiments

• Define important kinematic variables:

The Standard Model Collider Physics

Modelling the Reaction The Vector Meson The Photon The Dipole-Proton

The Physical Observables

Python Fits

R Program

Results

Conclusion

The Proton

The Standard Model Collider Physics

Modelling the Reaction The Vector Meson The Photon The Dipole-Proton

The Physical Observables

Python Fits

R Program

Results

Conclusion

The Proton

The Standard Model Collider Physics

Modelling the Reaction

The Vector Meson The Photon The Dipole-Proton

The Physical Observables

Python Fits

R Program

Results

Conclusion

Modelling the Reaction

The Standard Model Collider Physics

Modelling the Reaction

The Vector Meson The Photon The Dipole-Proton

The Physical Observables

Python Fits

R Program

Results

Conclusion

Modelling the Reaction

Modelling the Reaction

The Vector Meson The Photon The Dipole-Proton

The Physical Observables

Python Fits

R Program

Results

Conclusion

The Vector Meson Wavefunction

Use light-front dynamics and its holographic mapping to gravity in a higherdimensional anti-de Sitter (AdS) space to get a relativistic light-front wave equation for arbitrary spin (Brodsky, et al., 2015).

Modelling the Reaction

The Vector Meson The Photon The Dipole-Proton

The Physical Observables

Python Fits

R Program

Results

Conclusion

The Vector Meson Wavefunction

Use <u>light-front dynamics</u> and its holographic mapping to gravity in a higherdimensional anti-de Sitter (AdS) space to get a relativistic light-front wave equation for arbitrary spin (Brodsky, et al., 2015).

Light-Front Dynamics

- From relativistic dynamics
- Use the light-front form of wavefunction, rather than the instant form
- Represented as the plane on the edge of the light cone

Modelling the Reaction

The Vector Meson The Photon The Dipole-Proton

The Physical Observables

Python Fits

R Program

Results

Conclusion

The Vector Meson Wavefunction

Use <u>light-front dynamics</u> and its holographic mapping to gravity in a higherdimensional anti-de Sitter (AdS) space to get a relativistic light-front wave equation for arbitrary spin (Brodsky, et al., 2015).

Light-Front Dynamics

- From relativistic dynamics
- Use the light-front form of wavefunction, rather than the instant form
- Represented as the plane on the edge of the light cone

Modelling the Reaction

The Vector Meson The Photon The Dipole-Proton

The Physical Observables

Python Fits

R Program

Results

Conclusion

The Vector Meson Wavefunction

Use light-front dynamics and its <u>holographic mapping</u> to gravity in a higherdimensional anti-de Sitter (AdS) space to get a relativistic light-front wave equation for arbitrary spin (Brodsky, et al., 2015).

Holographic Mapping

- If a quantum theory in one space, of dimension *d*, corresponds to a gravitational theory in another space, of dimension *d* + 1, they are holographic duals.
- Mappings can be defined to go from one to the other.
- Strong interactions in 4D and weak interactions in 5D are approximately holographic duals.

Modelling the Reaction

The Vector Meson The Photon The Dipole-Proton

The Physical Observables

Python Fits

R Program

Results

Conclusion

The Vector Meson Wavefunction

Use light-front dynamics and its holographic mapping to gravity in a higherdimensional <u>anti-de Sitter (AdS) space</u> to get a relativistic light-front wave equation for arbitrary spin (Brodsky, et al., 2015).

Anti-de Sitter Space

- A maximally-symmetric Lorentzian manifold with constant negative curvature.
- AdS/QCD mapping
- Work in five-dimensional anti-de Sitter space (one temporal and four spatial dimensions)

Modelling the Reaction

The Vector Meson The Photon The Dipole-Proton

The Physical Observables

Python Fits

R Program

Results

Conclusion

The Vector Meson Wavefunction

• By writing an Eigenvalue equation where the square of the vector meson's mass are the Eigenvalues:

 $H_{LF} \left| \psi \right\rangle = M_V^2 \left| \psi \right\rangle$

• The holographic Light-Front Schrödinger Equation can be derived:

$$\left(-\frac{\mathrm{d}^2}{\mathrm{d}\zeta^2} - \frac{1-4L^2}{4\zeta^2} + U(\zeta)\right)\phi(\zeta) = M_V^2\phi(\zeta)$$

Modelling the Reaction

The Vector Meson The Photon The Dipole-Proton

The Physical Observables

Python Fits

R Program

Results

Conclusion

The Vector Meson Wavefunction

• From the solutions to the holographic SE, longitudinal and transverse wavefunctions can be written for the vector meson (Brodsky, et al., 2015).

$$\Psi_{\lambda}(x,\zeta) = N_{\lambda}\sqrt{x(1-x)}e^{-\frac{\kappa^{2}\zeta^{2}}{2}}e^{-\frac{m_{f}^{2}}{2\kappa^{2}x(1-x)}}$$

$$\Psi_{h,\overline{h}}^{V,L}(x,r) = \frac{1}{2} \delta_{h,\overline{h}} \left(1 + \frac{m_f^2 - \nabla_r^2}{x(1-x)M_V^2} \right) \Psi_L(x,r)$$

$$\Psi_{h,\overline{h}}^{V,T}(x,r) = \pm \left(i e^{\pm i\theta_r} \left(x \delta_{h\pm,\overline{h}\mp} - (1-x) \delta_{h\mp,\overline{h}\pm} \right) \partial_r + m_f \delta_{h\pm,\overline{h}\pm} \right) \frac{\Psi_T(x,r)}{2x(1-x)}$$

The Standard Model Collider Physics

Modelling the Reaction

The Vector Meson The Photon The Dipole-Proton

The Physical Observables

Python Fits

R Program

Results

Conclusion

Modelling the Reaction

Modelling the Reaction The Vector Meson The Photon The Dipole-Proton

The Physical Observables

Python Fits

R Program

Results

Conclusion

The Photon Wavefunction

- The photon is a point particle, and there are no strong interactions involved.
- Therefore, use light-front perturbation theory.

$$\Psi_{h,\overline{h}}^{\gamma,L}(x,r;Q^2) = \sqrt{\frac{N_c}{4\pi}} (\delta_{h,-\overline{h}}ee_f) \left(2x(1-x)\sqrt{Q^2}\right) \frac{\mathcal{K}_0(\varepsilon r)}{2\pi}$$

$$\Psi_{h,\overline{h}}^{\gamma,T}(x,r;Q^2) = \pm \sqrt{\frac{N_c}{2\pi}} ee_f \left(ie^{\pm i\theta_r} (x\delta_{h\pm,\overline{h}\mp} - (1-x)\delta_{h\mp,\overline{h}\pm})\partial_r + m_f \delta_{h\pm,\overline{h}\pm} \right) \frac{\mathrm{K}_0(\varepsilon r)}{2\pi}$$

The Standard Model Collider Physics

Modelling the Reaction

The Vector Meson The Photon The Dipole-Proton

The Physical Observables

Python Fits

R Program

Results

Conclusion

Modelling the Reaction

Modelling the Reaction

The Vector Meson The Photon The Dipole-Proton

The Physical Observables

Python Fits

R Program

Results

Conclusion

The Dipole-Proton Interaction

- Use the colour glass condensate (CGC) model.
 - Colour: Gluons have colour charge
 - Glass: The gluons fields evolve slowly over long timescales
 - Condensate: The density of gluons is very high
- Gluon density grows as energy increases.

Modelling the Reaction

The Vector Meson The Photon The Dipole-Proton

The Physical Observables

Python Fits

R Program

Results

Conclusion

The Dipole-Proton Interaction

• Define the saturation scale, *Q*_s, as the point at which the gluon density is saturated, and no longer increases.

$$Q_s(x_{Bj}) = \left(\frac{x_0}{x_{Bj}}\right)^{\frac{\lambda}{2}}$$

- Perturbative → non-perturbative as x approaches the saturation region.
- Balitsky-Fadin-Kuraev-Lipatov (BFKL) and Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) cannot describe the evolution.

Modelling the Reaction

The Vector Meson The Photon The Dipole-Proton

The Physical Observables

Python Fits

R Program

Results

Conclusion

The Dipole-Proton Interaction

Write the cross section in terms of a parameter *σ*₀ and a scattering amplitude, *N*:

$$\hat{\sigma}_{q\bar{q}}^{CGC}(x,r) = 2 \int \mathrm{d}^2 \underline{b} \mathcal{N}(x,r,b) = \sigma_0 \mathcal{N}(x,r)$$

$$\mathcal{N}(x,r) = \begin{cases} \mathcal{N}_0 \left(\frac{rQ_s}{2}\right)^2 \left(\gamma_s + \frac{1}{\kappa\lambda \ln\left(\frac{1}{x}\right)} \ln\left(\frac{2}{rQ_s}\right)\right) & rQ_s \le 2\\ 1 - e^{-A\ln^2(BrQ_s)} & rQ_s > 2 \end{cases}$$

Modelling the Reaction

The Vector Meson The Photon The Dipole-Proton

The Physical Observables

Python Fits

R Program

Results

Conclusion

The Dipole-Proton Interaction

- The CGC model has four free parameters.
- These must be found before doing any calculations.
- Find them by fitting to the 2015 HERA data.

$$\sigma_0, \quad x_0, \quad \gamma_s, \quad \lambda$$

Modelling the Reaction

The Vector Meson The Photon The Dipole-Proton

The Physical Observables

Python Fits

R Program

Results

Conclusion

Impact-Parameter Dependence

• Dependence on the impact-parameter <u>b</u> was introduced by H. Kowalski, L. Motyka, and G. Watt in 2006.

Modelling the Reaction

The Vector Meson The Photon The Dipole-Proton

The Physical Observables

Python Fits

R Program

Results

Conclusion

Impact-Parameter Dependence

- This is the **b-CGC model**.
- The dependence is expressed as an exponent in the saturation scale (Watt & Kowalski, 2008).

$$Q_s(x_{Bj}, b) = \left(\frac{x_0}{x_{Bj}}\right)^{\frac{\lambda}{2}} e^{-\frac{b^2}{4\gamma_s B_{CGC}}}$$

$$\hat{\sigma}_{q\bar{q}}^{b-CGC} = \int \mathrm{d}^2 \underline{b} \ 2\mathcal{N}(x,r,b)$$

• b-CGC has five free parameters:

$$x_0, \quad \gamma_s, \quad \lambda, \quad B_{CGC}, \quad \mathcal{N}_0$$

The Standard Model Collider Physics

Modelling the Reaction

The Vector Meson The Photon The Dipole-Proton

The Physical Observables

Python Fits

R Program

Results

Conclusion

Modelling the Reaction

The Standard Model Collider Physics

Modelling the Reaction The Vector Meson The Photon The Dipole-Proton

The Physical Observables

Python Fits

R Program

Results

Conclusion

The Physical Observables

- Multiply the three parts of the interaction and integrate over kinematic variables to calculate the imaginary part of the scattering amplitude.
- For the CGC model:

$$\mathcal{I}m\mathcal{A}_{\lambda}(s;Q^{2}) = \sum_{h,\overline{h}} \int d^{2}\underline{r} dx \underbrace{\Psi_{h,\overline{h}}^{\gamma^{*},\lambda}(x,r;Q^{2})}_{\text{Light-front}} \underbrace{\Psi_{h,\overline{h}}^{V,\lambda}(x,r)^{*}}_{\text{Light-front}} \underbrace{\sigma_{0}\mathcal{N}(x,r)}_{\text{CGC}}$$

• For the b-CGC model:

$$\mathcal{I}m\mathcal{A}_{\lambda}(s,t;Q^{2}) = \sum_{h,\overline{h}} \int d^{2}\underline{r} dx \underbrace{\Psi_{h,\overline{h}}^{\gamma^{*},\lambda}(x,r;Q^{2})}_{\text{Light-front}} \underbrace{\Psi_{h,\overline{h}}^{V,\lambda}(x,r)^{*}}_{\text{Light-front}} e^{-ix\underline{r}\cdot\underline{\Delta}} \underbrace{\mathcal{N}(x,r,\underline{\Delta})}_{\text{QCD}}$$

The Standard Model Collider Physics

Modelling the Reaction The Vector Meson The Photon The Dipole-Proton

The Physical Observables

Python Fits

R Program

Results

Conclusion

Differential Cross Sections

• Square the scattering amplitude to calculate the differential cross section. Assume an exponential dependence on *t* for the CGC model:

$$\frac{\mathrm{d}\sigma_{\lambda}}{\mathrm{d}t} = \frac{1}{16\pi} \left| \mathcal{I}\mathrm{m}\mathcal{A}_{\lambda}(s;Q^2) \right|^2 (1+\beta_{\lambda}^2) e^{-B_D t}$$

• Do not assume anything for the b-CGC model, since the *t*-dependence is being predicted.

$$\frac{\mathrm{d}\sigma_{q\bar{q}}}{\mathrm{d}t} = \frac{1}{16\pi} \left| \mathcal{I}\mathrm{m}\mathcal{A}_{\lambda}(s,t;Q^2) \right|^2 (1+\beta_{\lambda}^2) R_g^2(\alpha_{\lambda})$$

The Standard Model Collider Physics

Modelling the Reaction The Vector Meson The Photon The Dipole-Proton

The Physical Observables

Python Fits

R Program

Results

Conclusion

Cross Sections

- Integrate over *t* to calculate the longitudinal and transverse cross sections.
- In the CGC model:

$$\sigma_{\lambda} = \frac{1}{16\pi} \left| \mathcal{I} \mathbf{m} \mathcal{A}_{\lambda}(s, Q^2) \right|^2 (1 + \beta_{\lambda}^2) \left(\frac{1}{B_D} \right)$$

• In the b-CGC model:

$$\sigma_{\lambda} = \int \left(\frac{\mathrm{d}\sigma_{\lambda}}{\mathrm{d}t}\right) \mathrm{d}t$$

The Standard Model Collider Physics

Modelling the Reaction The Vector Meson The Photon The Dipole-Proton

The Physical Observables

Python Fits

R Program

Results

Conclusion

The Total Cross Section

• Add the transverse and longitudinal cross sections to calculate the total cross section:

 $\sigma = \sigma_T + 0.98\sigma_L$

• Define *R*, the ratio between cross section parts:

$$R = \frac{\sigma_L}{\sigma_T}$$

The Standard Model Collider Physics

Modelling the Reaction The Vector Meson The Photon The Dipole-Proton

The Physical Observables

Python Fits

R Program

Results

Conclusion

Python Fits

- Values must be found for the CGC and b-CGC model parameters by fitting to data.
- Use the 2015 HERA data (with $Q^2 \in [0.045, 45]$ GeV² and $x_{Bj} \leq 0.01$), and fit with a Python program.

Q^2	x _{Bj}	$\sigma_{r,\mathrm{NC}}^+$	δ_{stat}	$\delta_{ m uncor}$	$\delta_{\rm cor}$	$\delta_{\rm rel}$	$\delta_{\gamma p}$	$\delta_{ m had}$	δ_1	δ_2	δ_3	δ_4	$\delta_{ m tot}$
GeV ²			%	%	%	%	%	%	%	%	%	%	%
0.15	0.502×10^{-5}	0.185	3.79	1.50	3.62	1.39	0.35	-0.21	-0.17	-0.01	0.00	0.01	5.65
0.2	0.669×10^{-5}	0.227	1.65	0.78	1.70	0.86	0.57	0.00	0.00	0.00	0.00	0.01	2.70
0.2	0.849×10^{-5}	0.223	1.61	0.61	2.19	1.06	0.55	-0.26	-0.06	0.00	0.00	0.00	3.04
0.2	0.110×10^{-4}	0.208	2.79	1.50	2.83	1.01	0.34	-0.08	-0.18	0.00	0.00	0.01	4.38
0.2	0.398×10^{-4}	0.211	14.93	11.96	5.18	0.33	4.70	2.93	1.57	-0.03	-0.02	0.15	20.64
0.2	0.251×10^{-3}	0.180	13.49	6.17	3.00	0.32	1.39	-1.67	1.19	0.01	0.02	0.02	15.34
0.25	0.836×10^{-5}	0.265	1.46	0.73	1.92	1.17	0.63	-0.23	0.45	0.00	0.00	0.01	2.89
0.25	0.106×10^{-4}	0.260	1.29	0.66	1.84	1.11	0.63	-0.10	0.32	0.00	0.00	0.01	2.69
0.25	0.138×10^{-4}	0.249	1.27	0.72	1.85	1.24	0.61	-0.22	0.08	0.00	0.00	0.00	2.74
0.25	0.230×10^{-4}	0.243	1.41	1.50	2.37	2.23	0.38	-0.60	0.43	0.00	-0.02	0.01	3.94
0.25	0.398×10^{-4}	0.236	3.32	1.54	2.79	0.50	1.03	0.29	0.21	0.00	0.01	0.02	4.76
0.25	0.110×10^{-3}	0.199	3.96	1.50	2.50	0.77	0.32	0.06	-0.58	0.00	0.00	0.01	5.02
0.25	0.251×10^{-3}	0.196	3.75	1.44	3.26	-0.23	0.35	0.51	-0.21	0.01	0.02	0.02	5.22

The Standard Model Collider Physics

Modelling the Reaction The Vector Meson The Photon The Dipole-Proton

The Physical Observables

Python Fits

R Program

Results

Conclusion

Python Fits

return answer

- Fitting is done with the curve_fit() function from the scipy library.
- The program is written for parallel computing on ACE-NET supercomputers.

```
def parallel(sQ2x, *p):
    nProcesses = os.environ.get('OMP_NUM_THREADS', default = 0)
    nProcesses = int(nProcesses)
    if nProcesses == 0:
        nProcesses = None
    s, Qsq, xBj = sQ2x
    pList = []
    for param in p:
        pList.append(repeat(param))
    # Create pool of cpus and distribute cross section calculations
    with mp.Pool(nProcesses) as pool:
        answer = pool.starmap(redsigma, zip(s, Qsq, xBj, *pList))
```

The Standard Model Collider Physics

Modelling the Reaction The Vector Meson The Photon The Dipole-Proton

The Physical Observables

Python Fits

R Program

Results

Conclusion

Python Fits

- Light quark mass: *m*u, d, s = 0.14 GeV
- Charm quark mass: $m_c = 1.27 \text{ GeV}$
- $N_0 = 0.558$

```
Best Fit Estimates:
BCGC: 6.51384545963 +/- 0.190047008786
x0: 9.67573820879e-06 +/- 2.98905926743e-06
gammas: 0.545418479496 +/- 0.00935223272521
lambda: 0.140655603202 +/- 0.0035384521905
```

```
Total Chi-Squared: 678.93399952
Degrees of Freedom: 520
Reduced Chi-Squared: 1.30564230677
P Value: 3.08505653052e-06
```

The Standard Model Collider Physics

Modelling the Reaction The Vector Meson The Photon The Dipole-Proton

The Physical Observables

Python Fits

R Program

Results

Conclusion

Python Fits

• Judge these results by doing a chi-square goodness of fit test.

$$\chi^2 = \sum_i \frac{(E_i - T_i)^2}{T_i}$$

- From χ^2 , calculate the reduced χ^2 .
- The reduced χ^2 should be close to 1.0.
- $\chi^2 = 1.3$ indicates the fit is good.

The Standard Model Collider Physics

Modelling the Reaction The Vector Meson The Photon The Dipole-Proton

The Physical Observables

Python Fits

R Program

Results

Conclusion

Python Fits

 Run a second fit to a different data set with *Bccc* fixed at 5.5 GeV⁻².

Best Fit Estimates:
gammas: 0.662002661277
NO: 1.69076714587e-14
x0: 0.0013285927118
lambda: 0.206606324714

• Compare to Rezaeian, A. & Schmidt, I. (2013):

B_{CGC}/GeV^{-2}	$m_c/{ m GeV}$	γ_s	N_0	x_0	λ	χ^2 /d.o.f.
5.5	1.27	0.6599 ± 0.0003	0.3358 ± 0.0004	$0.00105 \pm 1.13 \times 10^{-5}$	0.2063 ± 0.0004	368.4/297 = 1.241
5.5	1.4	0.6492 ± 0.0003	0.3658 ± 0.0006	$0.00069 \pm 6.46 \times 10^{-6}$	0.2023 ± 0.0003	370.9/297 = 1.249

TABLE II: Parameters of the b-CGC dipole model, determined from fits to data in the range $x \leq 0.01$ and $Q^2 \in [0.75, 650] \text{ GeV}^2$. Results are shown for fixed light-quark masses $m_u = 10^{-2} \div 10^{-4}$ GeV and two fixed values of the charm quark masses (see the text for details).

The Standard Model Collider Physics

Modelling the Reaction The Vector Meson The Photon The Dipole-Proton

The Physical Observables

Python Fits

R Program

Results

Conclusion

R Program

- Define constants and set the fit parameter values.
- Calculate L and T normalisation constants for the meson wavefunction.
- Calculate imaginary L and T scattering amplitudes.
- Calculate L and T differential cross sections.
- Calculate and return the final values.

s = function (imput) becomfs(imput, i) }
27 a games, a balda s.ranget s.ranget s.ranget 27 augut - 10.44, 0.116, 1.444, 0.116, 7.500 28 augut - 10.416, 0.1061, 0.0016, 0.1116, 1.11
 artitus = cli.initiaries, 0.1100080000, K.FC0000098-6, 0.108, K.FL100100000 artisty = cli.initiaries, 0.11000000000, L.7000073624-6, 0.0000000044, A.1020075550 artisty = cli.initiaries, artisty = cli.initiaries, a
parameters - william
 n Barner - Brantes () M Galaxies de Textituite environ
28 - seralfae_a - function (seriables) (
$ \begin{array}{l} & p(1+a) = (1+a) + (1$
$ \frac{1}{(1/2)^{1/2}} = \frac{(1/2)^{1/2}}{(1/2)^{1/2}} + \frac{(1/2)^{1/2}$
и 19 ж.д. — L'aqttimiqtErtegrame(surve)tion, Sower.tett — c(0, 0), agert.tett — c(1, 15)))(strograf)
$ \begin{array}{l} p(1) = p(1) = a(r(2n^{-1}(1-x))^{-n}a(r(1-x))^{-1}(2n^{-1}(1-x))^{-1}(r(2n^{-1}(1-x))^{-1}(r(2n^{-1}(1-x))^{-1}(1-x))^{-1}(1-x))^{-1}(1-x)$
<pre>0 (a,t = 1/sprinkprintproximent/backs, and the s (1, 1), sper(bit = (1, 100))(expri) 0 (a c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c</pre>
n - Aux - Farentine (variables, 10,01, 10,82,01, 12,01))
<pre>H AChi.mogRC*press.lim10.0001 - %.reagRC*m20*log(1 - %.reagRC) = scatter (nd from seference (1) A - (1.227*(1 - %.reagRC**((%.reagRC**()))))))))))))))))))))))))))))))))))</pre>
A sector balance appropriet association and a sector of the appropriate and the sector of the sec
2 system : spy(1/(1 + 1))(2, 4 + 1)(1,
[3] = set = set (w(1, - x)) = set((-1/2)) (August 2) (w(3) - x) (* (-1/2)) (August 2) (* (-1/2)) (* (-1/2
Comp # (b_a,c_2e(1)) * a_exec(1) = a_exec(1) = a_exec(1) = a_e(1) = a_
11 σ = σπ/14006(2) 2 (100)(00) 3 (100)(00) 4 (100)(00)(00)(00)(00)(00)(00)(00)(00)(00
 a) a - a (2014)(a)(1) b) - a (2014)(a)(1)(1)(1)(1) - b (2004)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)
 A section () A sec
 I - Statistical -
 I I I I I I I I I I I I I I I I I I I
Image: Section 1000 Image: Section 1000 Image: Section 1000 Image: Section 10000 Image: Section 10000 Image: Section 10000 Image: Section 10000 Image: Section 10000 Image: Section 100000 Image: Section 100000 Image: Section 1000000 Image: Section 100000000 Image: Section 1000000000000000000000000000000000000
 Series C. S. S.
1 1 2 2 2 2 2 2 2 2 2
<pre>i</pre>
<pre> a control in the second second</pre>
 a control interface in the strength of the streng
<pre></pre>
<pre> a control in the second second</pre>
<pre> a control and a control</pre>
<pre>bit control in the second second</pre>
<pre> a set a set</pre>
<pre>bit control in the second second</pre>
<pre> a control and a control</pre>
<pre>bit is in the interval is interval</pre>
<pre> a control and a control</pre>
<pre> a control in the second second</pre>
<pre> a control and a control</pre>
<pre> Provide Prov</pre>
<pre> a control a control</pre>

The Standard Model Collider Physics

Modelling the Reaction The Vector Meson The Photon The Dipole-Proton

The Physical Observables

Python Fits

R Program

Results

Conclusion

R Program

}

- Calculate integrals using the adaptIntegrate() function from the cubature package.
- Multidimensional adaptive integration over a hypercube.

```
Normalise_L = function (variables) {
   x = variables[1]
   r = variables[2]
   psi = sqrt(x*(1 - x))*exp((-1/2)*(((kappa**2)*(r**2)*x*(1 - x)) +
    ((m**2)/((kappa**2)*x*(1 - x)))))
    psi_dr2 = (kappa**2)*((x*(1 - x))**(3/2))*((kappa**2)*(r**2)*x*(1 - x) - 2)*
    \exp((-1/2)*(((kappa**2)*(r**2)*x*(1 - x)) + ((m**2)/((kappa**2)*x*(1 - x)))))
    (1/2)*pi*r*((psi**2) + (2*(m**2)*(psi**2) - 2*psi*psi_dr2)/(x*(1 - x)*(M**2)) +
    ((m**4)*(psi**2) + (psi_dr2**2) - (2*(m**2)*psi*psi_dr2))/((x*(1 - x)*(M**2))**2))
N_L = 1/sqrt(adaptIntegrate(Normalise_L, lowerLimit = c(0, 0))
                                         upperLimit = c(1, 25) ($integral)
```

The Standard Model Collider Physics

Modelling the Reaction The Vector Meson The Photon The Dipole-Proton

The Physical Observables

Python Fits

R Program

Results

Conclusion

R Program

• adaptIntegrate() cannot integrate to infinity.

The Standard Model Collider Physics

Modelling the Reaction The Vector Meson The Photon The Dipole-Proton

The Physical Observables

Python Fits

R Program

Results

Conclusion

R Program

• Upper limits on normalisation integrals were set to 25 (longitudinal) and 100 (transverse).

The Standard Model Collider Physics

Modelling the Reaction The Vector Meson The Photon The Dipole-Proton

The Physical Observables

Python Fits

R Program

Results

Conclusion

Optimisation – Simplification

- Most functions were simplified by hand.
- For example, the b-CGC scattering amplitude:

$$\mathcal{I}m\mathcal{A}_{\lambda}(s,t;Q^{2}) = \sum_{h,\overline{h}} \int d^{2}\underline{r} dx \underbrace{\Psi_{h,\overline{h}}^{\gamma^{*},\lambda}(x,r;Q^{2})}_{\text{Light-front}} \underbrace{\Psi_{h,\overline{h}}^{V,\lambda}(x,r)^{*}}_{\text{h,\overline{h}}} e^{-ix\underline{r}\cdot\underline{\Delta}} \underbrace{\mathcal{N}(x,r,\Delta)}_{\text{QCD}} \\ \Psi_{h,\overline{h}}^{V,L}(x,r) = \frac{1}{2} \delta_{h,\overline{h}} \left(1 + \frac{m_{f}^{2} - \nabla_{r}^{2}}{x(1-x)M_{V}^{2}} \right) \Psi_{L}(x,r)$$

2 *

(sqrt(N_c/(pi))*q_e*e*x*(1 - x)*sqrt(Q2)*K(epsilon*r))/pi *

(N_L/(2*sqrt(2)))*((1 + ((m**2)/(x*(1 - x)*(M**2))))
(psi) - (1/(x(1 - x)*(M**2)))*(psi_dr2)) *

((2*pi)**2)*r*b*N *

J(x*r*sqrt(t_in))*J(b*sqrt(t_in))

The Standard Model Collider Physics

Modelling the Reaction The Vector Meson The Photon The Dipole-Proton

The Physical Observables

Python Fits

R Program

Results

Conclusion

Optimisation – Vectorisation

- Everything in R is a vector.
- Programs written to take advantage of this are faster.
- All functions were vectorised manually, with special R functions, or with the Vectorize() function.

$$\mathcal{N}(x,r) = \begin{cases} \mathcal{N}_0 \left(\frac{rQ_s}{2}\right)^{2\left(\gamma_s + \frac{1}{\kappa\lambda \ln\left(\frac{1}{x}\right)}\ln\left(\frac{2}{rQ_s}\right)\right)} & rQ_s \le 2\\ 1 - e^{-A\ln^2(BrQ_s)} & rQ_s > 2 \end{cases}$$

The Standard Model Collider Physics

Modelling the Reaction The Vector Meson The Photon The Dipole-Proton

The Physical Observables

Python Fits

R Program

Results

Conclusion

Optimisation – Tolerance

- The tolerance was increased on all integrals. (10x)
- The default is 1e-5, but it was increased to 1e-2 without significantly affecting the precision of the calculations.

[1] 0.0005195478
[1] 0.0005192687

The Standard Model Collider Physics

Modelling the Reaction The Vector Meson The Photon The Dipole-Proton

The Physical Observables

Python Fits

R Program

Results

Conclusion

Optimisation – Other Changes

- Comparisons against 0 are faster. Therefore, the conditions on the piecewise N(x, r) and N(x, r, b) functions were rewritten. (2.7x)
- Because all functions are symmetric in *x*, the upper limit was set to 0.5, then the result was multiplied by 2. (1.8x)
- Using a faster processor

The Standard Model Collider Physics

Modelling the Reaction The Vector Meson The Photon The Dipole-Proton

The Physical Observables

Python Fits

R Program

Results

Conclusion

R Program

- The VMP() function can output d_sigma, sigma, and ratio values, as well as errors.
- The output is an R data frame.
- The data from the data frame can be easily displayed or called by another function later.

VMP(model = "bCGC", parameters = "Amir", meson = "rho", W = 75, Q2 = bCGC_Q2, return = "sigma")\$sigma

W <ldbl></ldbl>	Q2 <dbl></dbl>	t <dbl></dbl>	d_sigma <dbl></dbl>	sigma <dbl></dbl>	sigma_error <dbl></dbl>	ratio <dbl></dbl>	ratio_error <dbl></dbl>
75	1	0	1.649950e+04	2.509534e+03	4.932490024	0.5821071	0.003149744
75	2	0	5.748792e+03	9.267990e+02	3.437952933	1.0059009	0.007491377
75	15	0	6.571915e+01	1.369358e+01	0.028118749	4.2283055	0.039163778
75	20	0	2.998957e+01	6.484682e+00	0.053389937	5.2671936	0.061027244
75	25	0	1.613772e+01	3.505803e+00	0.028034274	6.0218509	0.079882200
75	30	0	9.592851e+00	2.158338e+00	0.006816969	7.1404210	0.025930675
75	40	0	3.905281e+00	9.612168e-01	0.009404427	9.1595874	0.832325682
75	50	0	2.065010e+00	5.040970e-01	0.007091700	10.7000782	1.532241885
75	75	0	6.077957e-01	1.479488e-01	0.008538513	14.4947252	11.600263645
75	100	0	2.468990e-01	6.423527e-02	0.007816554	18.9680613	8.857521258

The Standard Model Collider Physics

Modelling the Reaction The Vector Meson The Photon The Dipole-Proton

The Physical Observables

Python Fits

R Program

Results

Conclusion

Results

- Plot the differential cross section, cross section, and ratio for ρ and φ production using both the CGC and b-CGC models.
 - Differential cross section vs |t|
 - Cross section vs Q²
 - Cross section vs W
 - Ratio vs Q²
- Compare to H1 and ZEUS data.

The Standard Model Collider Physics

Modelling the Reaction The Vector Meson The Photon The Dipole-Proton

The Physical Observables

Python Fits

R Program

Results

Conclusion

dσ/dt vs |t| (ρ)

The Standard Model Collider Physics

Modelling the Reaction The Vector Meson The Photon The Dipole-Proton

The Physical Observables

Python Fits

R Program

Results

Conclusion

dσ/dt vs |t| (φ)

The Standard Model Collider Physics

Modelling the Reaction The Vector Meson The Photon The Dipole-Proton

The Physical Observables

Python Fits

R Program

Results

Conclusion

σ vs Q2 (ρ and $\phi)$

The Standard Model Collider Physics

Modelling the Reaction The Vector Meson The Photon The Dipole-Proton

The Physical Observables

Python Fits

R Program

Results

Conclusion

σ vs W (ρ, #1)

The Standard Model Collider Physics

Modelling the Reaction The Vector Meson The Photon The Dipole-Proton

The Physical Observables

Python Fits

R Program

Results

Conclusion

σ vs W (ρ, #2)

The Standard Model Collider Physics

Modelling the Reaction The Vector Meson The Photon The Dipole-Proton

The Physical Observables

Python Fits

R Program

Results

Conclusion

σ vs W (φ, #1)

σ [nb]

The Standard Model Collider Physics

Modelling the Reaction The Vector Meson The Photon The Dipole-Proton

The Physical Observables

Python Fits

R Program

Results

Conclusion

σ vs W (φ, #2)

The Standard Model Collider Physics

Modelling the Reaction The Vector Meson The Photon The Dipole-Proton

The Physical Observables

Python Fits

R Program

Results

Conclusion

R vs Q^2 (ρ and ϕ)

The Standard Model Collider Physics

Modelling the Reaction The Vector Meson The Photon The Dipole-Proton

The Physical Observables

Python Fits

R Program

Results

Conclusion

Conclusion

- In general, results are encouraging.
- A cross-check is needed to verify the numerical results.
- The light-front holographic wavefunction is a good description for the production of ϕ mesons.

The Standard Model Collider Physics

Modelling the Reaction The Vector Meson The Photon The Dipole-Proton

The Physical Observables

Python Fits

R Program

Results

Conclusion

Conclusion

- Future work:
 - Find and fix any bugs that may exist in the program
 - Expand the program to other mesons and models
 - Create a GUI to wrap the calculations together

Vector Meson Production.Rexe									
Model	Meson	CG	C Parameters		b-CGC Para	ameters			
✓ CGC	Θρ	хO	9.6757e-	-6	NO	0.5580			
✓ b-CGC	Οφ	gamm	0.5454		BCGC	6.5138			
b-SAT	ψ\ι 🔾	lambo	la 0.1407						
Upload Data Se H1 (2000) H1 (2010)	ts		Green Red	• •	Square Triangle	Remove Remove			
ZEUS (2007)			Blue	Ŧ	Circle	Remove			
Upload									
			Run						

Acknowledgements

Dr Mohammad Ahmady

Dr Abdelhaq Hamza

Dr Ruben Sandapen

Melanie Gascoine

Dr Robert Sorba

Dr Neetika Sharma

Natural Sciences and Engineering Research Council Compute Canada