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Mei & Hime (2006)

𝐼 ℎ = 𝐼1𝑒
(−ℎ/𝜆1) + 𝐼2𝑒

(−ℎ/𝜆2)

• The last complete reference for cosmic ray

muons was published in 2000 (Bugaev, [1]).

• Bugaev calculations lack rigorous treatment of

uncertainties.

• Mei & Hime (2006) [2] and Crouch (1987) [3]

use Depth-Intensity Relations (DIRs):

• Equivalent vertical depth is the depth under

flat earth that a lab under a mountain would

be at, given the muon flux the detector sees.

• Phenomenological fits may contain bias induced by systematics.
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Issues with Vertical-Equivalent Intensity

• Vertical-equivalent intensity is typically:

• However, the approximation that the muon flux

scales with 1/cos(θ) is poor at large θ.

• Instead, calculate a true vertical intensity by

calculating the muon intensity for only θ = 0:

• We aim to develop a new, modern, flexible, high-

precision method to improve on the Bugaev and Mei

& Hime papers.
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𝐼𝑒𝑞
𝑢 (𝑋) = 𝐼𝑢 𝑋, 𝜃 cos(𝜃)

𝐼𝑡𝑟
𝑢 (𝑋) = 𝐼𝑢 𝑋, 𝜃 = 0



Simulation Method

h

MCEq [4]

PROPOSAL [5]
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Surface Muon Spectra:

• Primary cosmic rays

• Atmosphere

• Angular distributions

Detector

Transport Underground:

• Discrete losses

• Continuous losses

• Stopping and decay



Simulation Method
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Atmosphere to Surface: MCEq

• One-dimensional fast cascade equation solver.

• Use recent hadronic interaction models DDM

[6] and SIBYLL-2.3d [4] + Bartol errors [7].

Surface to Underground: PROPOSAL

• Full Monte Carlo program that simulates the

transport of leptons through long ranges of

matter quickly and with high precision.

• Used to calculate transfer matrices.

7See Anatoli Fedynitch’s talk (#1227) for more details.



Calculation of the Underground Flux

Underground Flux: Φ𝑢(𝐸𝑗
𝑢, 𝑋𝑘 , 𝜃𝑘) = σ𝑖Φ

𝑠 𝐸𝑖
𝑠, 𝜃𝑘 𝑃 𝐸𝑖

𝑠, 𝐸𝑗
𝑢, 𝑋𝑘

ΔE𝑖
𝑠

ΔE𝑗
𝑢

× =

Surface Flux Transfer Matrix Underground Flux

From MCEq From PROPOSAL
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Non-Flat Overburdens

θ
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Gran Sasso
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• Underground intensity:

• There is non-negligible uncertainty that comes

from the use of equivalent-vertical intensity (see

slides 17 and 18).

• Therefore, we perform our calculation using true

vertical intensity:

• There is good agreement with the data (from [8])

over the entire depth range.

Underground Intensity

𝐼𝑢(𝑋, 𝜃) = න
𝐸min

𝐸max

Φ𝑢 𝐸𝑢, 𝑋, 𝜃 d𝐸𝑢
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𝐼𝑡𝑟
𝑢 (𝑋) = 𝐼𝑢 𝑋, 𝜃 = 0



Comparison to Data
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• DDM is better at describing shallow slant depths, and SIBYLL is better at deeper slant depths.

• Uncertainties on data are smaller than those on theory.

• ⇒ Using our method, we can constrain hadronic and cosmic ray uncertainties.



Total Underground Flux
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• The total underground flux is integrated over all

energies and angles.

• This is the relevant observable for calculations

of underground muon-induced backgrounds.

• Equivalent depths for mountain labs determined

from computations for flat overburdens (maps

from [9] and [10]).

• Our calculation reproduces flat-overburden labs

(WIPP, Soudan, Boulby, SNOLAB) excellently.

• The empirical fit of Mei & Hime is reproduced

well without doing any fits to data.
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Preliminary
Data from [2] and [11]



Seasonal Variations
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• Density and temperature of the

atmosphere vary across seasons,

so pions and kaons decay into

muons more or less often.

• Therefore, there is seasonal

variation in the muon flux.

• The NRLMSISE-00 model [12]

allows the atmosphere to be

changed in MCEq to simulate this.

• Two contributing effects:

1. The depth of the lab

2. The location on Earth

Preliminary
Data from [13-15]
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Conclusion

• A program has been written to combine modern codes MCEq and PROPOSAL to make predictions

for muons deep underground.

• The program is fast, precise, and flexible. The results match experimental data very well.

• It can be used by dark matter and neutrino experiments to calculate muon underground fluxes for

labs with flat overburdens or mountains.

• It can simulate the seasonal variations of the muon flux.

• It can be used to constrain hadronic and cosmic ray uncertainties.

• A paper will be ready for publication soon, and the code will be made public. Stay tuned!
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