
Introduction to Programming
and Data Analysis

Dark Matter Week – Tuesday

William Woodley

Programming Languages

• There are a number of languages and tools commonly used in physics:

Fortran Python Bash

C MATLAB LaTeX

C++ Mathematica IDL

C# Maple Verilog

Java R Visual Studio

Programming Languages

• There are a number of languages and tools commonly used in physics:

• We’re going to be focussing on Python this week.

Fortran Python Bash

C MATLAB LaTeX

C++ Mathematica IDL

C# Maple Verilog

Java R Visual Studio

Why Python?

• There are a number of reasons to prioritise Python over other languages:

1. It’s free.

2. It can be used on any platform.

3. It has a lot of scientific libraries with very good documentation, and more are

constantly being added.

4. It has a huge scientific community, and its use in physics is growing. It has

become the default programming language for the physics community.

5. It has good support and an active development community.

6. It is a high-level language, and is much easier to learn for beginners than

other popular languages, like C++.

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one -- and preferably only one -- obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it's a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let's do more of those!

The Zen of Python

Using Python in a Jupyter Notebook

• You can write Python code in text files and run them from the terminal (or write

Python in the terminal directly).

• A more modern way of writing Python code is in a Jupyter notebook.

https://cybera.syzygy.ca

https://cybera.syzygy.ca/

Python Basics

Arithmetic Operators

• The basic arithmetic operators in Python are:

• Use brackets to organise complicated expressions.

Operation: Operator: Example:

Addition + "Hi" + " there"

Subtraction - 5 – 3, -1

Multiplication * 2*"Hello"

Division / 15/3

Exponentiation ** 10**2

Modulus % 25%2

Floor Division // 26.5//2

(5**(10 + 3))/(((75 - 6)*(32**2)) + (1/5))

Data Types

• There are a number of different data types in Python.

• Types are assigned dynamically, so you do not have to specify types.

• To get a variable’s type, use type(var).

Type: Name: Example:

Numeric int, float, complex 4, 36.8, 1.2e6, 6+8j

Text str "Hello, World!"

Sequence list, tuple, range [1, 2, 3], ("a", "b", "c")

Mapping dict {"a": 1, "b": 2, "c": 3}

Sets set, frozenset {"hello", 2+5.3j, (0)}

Boolean bool True, False

Binary bytes, bytearray, memoryview b"Hello"

None NoneType None

Assigning Values

• The = sign is the assignment operator in Python. This assigns values to variable

names.

• You can assignment multiple variables at once.

• Assignment happens after the evaluation of the expression.

• There are some shorthand notations for certain operations.

var = 3

Assigning Values

• The = sign is the assignment operator in Python. This assigns values to variable

names.

• You can assignment multiple variables at once.

• Assignment happens after the evaluation of the expression.

• There are some shorthand notations for certain operations.

var1, var2 = 3, 4

Assigning Values

• The = sign is the assignment operator in Python. This assigns values to variable

names.

• You can assignment multiple variables at once.

• Assignment happens after the evaluation of the expression.

• There are some shorthand notations for certain operations.

var1 = var1*3

Assigning Values

• The = sign is the assignment operator in Python. This assigns values to variable

names.

• You can assignment multiple variables at once.

• Assignment happens after the evaluation of the expression.

• There are some shorthand notations for certain operations.

var1 *= 3

Variable Names

• You can use letters, numbers, and underscores for variable names.

• Variable names are case-sensitive.

• Don’t start variable names with numbers.

• It’s good to be detailed with your variable names. Long names aren’t a bad thing.

Valid Variable Names:

n E_sq
N F2
variable_name _
momentum ex_var_8

Invalid Variable Names:

2pi >ab
for value!
#velocity lambda
alpha$beta 4th_term

Keywords

• There are a number of reserved key words in Python. These are words Python

uses to understand your program, so you should not and cannot overwrite them.

False await else import pass

None break except in raise

True class finally is return

and continue for lambda try

as def from nonlocal while

assert del global not with

async elif if or yield

Boolean Algebra

• Boolean algebra is binary system of logic. It was

created by Charles Boole in 1847.

• Variables can have two values: TRUE, FALSE.

• There are three main operators: NOT, AND, OR.

• We understand logical operations through truth

tables.

Charles Boole (1815 – 1864)

A B NOT A A AND B A OR B

T T F T T

T F F F T

F T T F T

F F T F F

Boolean Algebra

Boolean Operators

• There are three main Boolean operators in Python:

• Operations can be combined. Use brackets to make things clear.

Operation: Operator: Example:

Not not not x

And and x and y

Or or x or y

a = True
b = False

(a and b) or not (b or (a or b))

Comparison Operators

• The basic comparison operators are:

Operation: Operator: Example:

Less Than < x < 1e5

Less Than or Equal to <= x <= -1

Greater Than > x > 25

Greater Than or Equal to >= x >= 1

Equal to == x == 0

Not Equal to != x != 10

Identity is x is y

Non-Identity is not x is not None

Inclusion in i in [1, 2, 3]

Non-Inclusion not in i not in [4, 5]

Other isinstance() x.isinstance(str)

Truthy and Falsy

• Certain values are equivalent to True. These are known as truthy values. Some are

equivalent to False. These are falsy.

• Check the truthiness of a variable using bool(var).

Truthy: Falsy:

True False

Non-zero numbers: 1, 2, etc. Zeros: 0, 0.0, 0j

np.inf, NaN None

Non-empty strings: "hello" Empty string: ""

Non-empty lists: [1, 2, 3] Empty list: []

Non-empty tuples: (4, 5) Empty tuple: ()

Other: {“a": 1}, etc. Other: {}, range(0), etc.

Python Standard Library

• There are a number of built-in function in Python. Some commone ones include:

abs() complex() frozenset() iter() print()

all() delattr() getattr() len() property()

any() dict() globals() list() range()

bin() dir() hasattr() locals() round()

bool() divmod() help() max() set()

bytearray() enumerate() hex() memoryview() sorted()

bytes() eval() id() min() sum()

callable() exec() input() open() type()

chr() float() int() ord() tuple()

classmethod() format() isinstance() pow() zip()

Python Standard Library

• There are a number of built-in function in Python. Some commone ones include:

abs() complex() frozenset() iter() print()

all() delattr() getattr() len() property()

any() dict() globals() list() range()

bin() dir() hasattr() locals() round()

bool() divmod() help() max() set()

bytearray() enumerate() hex() memoryview() sorted()

bytes() eval() id() min() sum()

callable() exec() input() open() type()

chr() float() int() ord() tuple()

classmethod() format() isinstance() pow() zip()

Essential; Helpful for math and operations; Converting data types; Other

Libraries

• Base Python doesn’t have functions for all of the things we want to do.

• Luckily, there are thousands of libraries out there that we can import. Then we have

access to all of the functions in those libraries.

• Some of the most common libraries are:

• os Working with files, folders, etc.

• sys Working with files, folders, etc.

• numpy Math, arrays, matrices

• scipy Data analysis (optimisation, fitting, interpolation, etc.)

• matplotlib Making graphs

• pandas Importing data from files

• tensorflow Neural networks

• And thousands more!

Installing Libraries

• Python libraries are stored on PyPI: the

Python Project Interface.

• They can be installed from a terminal

using pip.

• Many are open-source. The source

codes can be found on GitHub, along

with examples and documentation.

$ pip install iminuit
$
$ pip install numpy==1.23.0
$
$ pip show numpy
$
$ python3 --version
$
$ which python3
$
$ python3

https://pypi.org

https://github.com

https://pypi.org/
https://github.com/

Documentation

• Widely used Python libraries have full documentation for all functions.

Importing Libraries

• There are different syntaxes for importing libraries:

import numpy
numpy.linspace(0, 10, 100)

import matplotlib.pyplot as plt
plt.plot(x, y)

from scipy.optimize import curve_fit, minimize
curve_fit(function, x, y)

from scipy.interpolate import interpn as inn
inn(points, values, xi)

from pandas import *
read_csv("file.csv")

Arrays

• Arrays are one of the most versatile and useful data types in Python. Almost

everything I do in Python is done using arrays.

• Arrays have elements and indices.

arr = np.array([5, 3, 8, 2, 11, 4, 2, 6, 15])
0 1 2 3 4 5 6 7 8

Arrays

• Arrays are one of the most versatile and useful data types in Python. Almost

everything I do in Python is done using arrays.

• Arrays have elements and indices.

arr = np.array([5, 3, 8, 2, 11, 4, 2, 6, 15])
0 1 2 3 4 5 6 7 8

Arrays

• Arrays are one of the most versatile and useful data types in Python. Almost

everything I do in Python is done using arrays.

• Arrays have elements and indices.

arr = np.array([5, 3, 8, 2, 11, 4, 2, 6, 15])
0 1 2 3 4 5 6 7 8

• Arrays are one of the most versatile and useful data types in Python. Almost

everything I do in Python is done using arrays.

• Arrays have elements and indices.

• To pull out a certain element of an array, put the index of that element in square

brackets after the variable name.

• Important: Python begins counting at 0!

arr = np.array([5, 3, 8, 2, 11, 4, 2, 6, 15])
0 1 2 3 4 5 6 7 8

Arrays

[In]: print(arr[2])
[Out]: 8

• You can count backwards in Python by indexing with negative numbers.

Other Ways of Indexing

arr = np.array([5, 3, 8, 2, 11, 4, 2, 6, 15])
0 1 2 3 4 5 6 7 8

-9 -8 -7 -6 -5 -4 -3 -2 -1

[In]: print(arr[6:])
[Out]: [2, 6, 15]

[In]: print(arr[:3])
[Out]: [5, 3, 8]

[In]: print(arr[2:-4])
[Out]: [8, 2, 11]

• You can count backwards in Python by indexing with negative numbers.

• You can use colons to slice sections of an array.

arr = np.array([5, 3, 8, 2, 11, 4, 2, 6, 15])
0 1 2 3 4 5 6 7 8

-9 -8 -7 -6 -5 -4 -3 -2 -1

Other Ways of Indexing

• You can count backwards in Python by indexing with negative numbers.

• You can use colons to slice sections of an array.

arr = np.array([5, 3, 8, 2, 11, 4, 2, 6, 15])
0 1 2 3 4 5 6 7 8

-9 -8 -7 -6 -5 -4 -3 -2 -1

Other Ways of Indexing

[In]: print(arr[6:])
[Out]: [2, 6, 15]

[In]: print(arr[:3])
[Out]: [5, 3, 8]

[In]: print(arr[2:-4])
[Out]: [8, 2, 11]

• You can count backwards in Python by indexing with negative numbers.

• You can use colons to slice sections of an array.

arr = np.array([5, 3, 8, 2, 11, 4, 2, 6, 15])
0 1 2 3 4 5 6 7 8

-9 -8 -7 -6 -5 -4 -3 -2 -1

Other Ways of Indexing

[In]: print(arr[6:])
[Out]: [2, 6, 15]

[In]: print(arr[:3])
[Out]: [5, 3, 8]

[In]: print(arr[2:-4])
[Out]: [8, 2, 11]

• You can select the elements of an array that satisfy a given condition by passing

that condition as an index to the array.

• The condition may be specified with a different array:

• The elements of arr corresponding to the indices for which the sel array are

greated than 4 are selected.

Boolean Indexing

[In]: arr[arr > 4]
[Out]: [5, 8, 11, 6, 15]

[In]: sel = np.array([10, 10, 1, 1, 1, 1, 1, 1, 1])
arr[sel > 4]

[Out]: [5, 3]

Defining Arrays

• There are a number of ways to create arrays.

• Almost every function in the NumPy library return arrays.

• You can do math with arrays!

my_list = [1, 2, 3]

arr1 = np.array(my_list) # Converts a list into an array
arr2 = np.linspace(0, 10, 100) # Range defined by number of elements
arr3 = np.arange(0, 10, 2) # Range defined by step size
arr4 = np.zeros(my_list) # Array or matrix of zeros of given shape

print(my_list*2)
print(arr1*2)

Dictionaries

• Dictionaries are like lists and arrays, but instead of indexing with integers, you

index with strings.

• Dictionaries have keys and values.

ingredients = {"hot_peppers": 12,
"onions": 3,
"cilantro": 1,
"tomatoes": 4}

[In]: print(ingredients["tomatoes"])
[Out]: 4

Matrices

• Arrays can have multiple dimensions. Matrices are 2D rectangular arrays.

• They are indexed with two indices: matrix[i, j].

• First Index: Row

• Second Index: Column

1 2 3

4 5 6 7

8 9

1 2 3 4

5 6 7 8

9 10 11 12

List of Lists Matrix

Shaping Matrices

• You can reshape matrices from arrays or other matrices:

• You can print the shape of the matrix using the shape attribute:

arr = np.linspace(1, 24, 24)

matrix = np.reshape(arr, newshape = (6, 4))

[In]: print(matrix.shape)
[Out]: (6, 4)

0 1 2 3

0 1 2 3 4

1 5 6 7 8

2 9 10 11 12

3 13 14 15 16

4 17 18 19 20

5 21 22 23 24

Indexing Matrices

• You can select specific elements of a matrix:

matrix[-1, 2] = = 23

0 1 2 3

0 1 2 3 4

1 5 6 7 8

2 9 10 11 12

3 13 14 15 16

4 17 18 19 20

5 21 22 23 24

Indexing Matrices

• You can slice ranges of rows and columns:

matrix[2:4, 1:] = =
10 11 12

14 15 16

Not included in

the selection

[2, 4)

0 1 2 3

0 1 2 3 4

1 5 6 7 8

2 9 10 11 12

3 13 14 15 16

4 17 18 19 20

5 21 22 23 24

Indexing Matrices

• You can select multiple rows and columns:

matrix[3, [0, 2]] = = 13 15

0 1 2 3

0 1 2 3 4

1 5 6 7 8

2 9 10 11 12

3 13 14 15 16

4 17 18 19 20

5 21 22 23 24

Indexing Matrices

• You can combine all of these if you need to:

matrix[[0, 4], 1:-1] = =
2 3

18 19

More Math with Arrays

• You can find the maximum, minimum, find the mean, take sums, etc.

np.min(matrix)
np.max(matrix)

np.mean(matrix)
np.mean(matrix, axis = 0)
np.mean(matrix, axis = 1)

np.sum(matrix)
np.sum(matrix, axis = 0)
np.sum(matrix, axis = 1)

More Math with Arrays

Syntax

• A lot of programming languages use curly brackets and semicolons to indicate

syntax. Python, however, uses whitespace.

• You can use single (') or double (") quotation marks in Python interchangeably.

• Lines starting with # are comments. Python completely ignores them when running

your code.

C++:

for (int i = 0; i < 10; i++) {
cout << "i = " << i << "\n";

}

Python:

for i in range(10): # for-loop
print("i = ", i)

• A lot of programming languages use curly brackets and semicolons to indicate

syntax. Python, however, uses whitespace.

• You can use single (') or double (") quotation marks in Python interchangeably.

• Lines starting with # are comments. Python completely ignores them when running

your code.

C++:

for (int i = 0; i < 10; i++) {
cout << "i = " << i << "\n";

}

Python:

for i in range(10): # for-loop
print("i = ", i)

Syntax

4 spaces (NOT a tab)

_ _ _ _

for-Loops

• We often want to iterate through lists of values. The best way of doing this is

usually by using a for-loop.

my_list = [4, 3, 8, 2, 9]

for i in range(len(my_list)):

print(my_list[i])

[In]:

[Out]: 4
3
8
2
9

for-Loops

• We often want to iterate through lists of values. The best way of doing this is

usually by using a for-loop.

my_list = [4, 3, 8, 2, 9]

for i in range(len(my_list)):

print(my_list[i])

[In]:

[Out]:

Creates iterator to loop through

the values [0, 1, 2, 3, 4].

for-Loops

• We often want to iterate through lists of values. The best way of doing this is

usually by using a for-loop.

my_list = [4, 3, 8, 2, 9]

for i in range(len(my_list)):

print(my_list[i])

[In]:

[Out]:

Sets the value of i to the first

value in the iterator: 0.

for-Loops

• We often want to iterate through lists of values. The best way of doing this is

usually by using a for-loop.

my_list = [4, 3, 8, 2, 9]

for i in range(len(my_list)):

print(my_list[i])

[In]:

[Out]: 4

Executes all the code

inside the loop.

for-Loops

• We often want to iterate through lists of values. The best way of doing this is

usually by using a for-loop.

my_list = [4, 3, 8, 2, 9]

for i in range(len(my_list)):

print(my_list[i])

[In]:

[Out]: 4

Sets the value of i to the next

value in the iterator: 1.

for-Loops

• We often want to iterate through lists of values. The best way of doing this is

usually by using a for-loop.

my_list = [4, 3, 8, 2, 9]

for i in range(len(my_list)):

print(my_list[i])

[In]:

[Out]: 4
3

Executes all the code

inside the loop again.

for-Loops

• We often want to iterate through lists of values. The best way of doing this is

usually by using a for-loop.

my_list = [4, 3, 8, 2, 9]

for i in range(len(my_list)):

print(my_list[i])

[In]:

[Out]: 4
3
8
2
9

This happens until all values of

the iterator are looped through.

Filling Lists and Arrays

• We can use for-loops as a way to fill lists and arrays.

numbers = [1, 2, 3, 4, 5, 6, 7]
squares = []

for n in numbers:

squares.append(n**2)

print(squares)

Filling Lists and Arrays

• This is similar to:

numbers = [1, 2, 3, 4, 5, 6, 7]
squares = np.zeros(len(numbers))

for n in range(len(numbers)):

squares[n] = numbers[n]**2

print(squares)

Nested for-Loops

• To loop through all elements of a matrix, put a for-loop inside another for-loop:

print(matrix.shape) # This will return (6, 4)

for i in range(matrix.shape[0]): # The same as range(6)

for j in range(matrix.shape[1]): # The same as range(4)

print(matrix[i, j]) # This will print every element

0 1 2 3

0 1 2 3 4

1 5 6 7 8

2 9 10 11 12

3 13 14 15 16

Nested for-Loops

• To loop through all elements of a matrix, put a for-loop inside another for-loop:

print(matrix.shape) # This will return (6, 4)

for i in range(matrix.shape[0]): # The same as range(6)

for j in range(matrix.shape[1]): # The same as range(4)

print(matrix[i, j]) # This will print every element

0 1 2 3

0 1 2 3 4

1 5 6 7 8

2 9 10 11 12

3 13 14 15 16

Nested for-Loops

• To loop through all elements of a matrix, put a for-loop inside another for-loop:

0 1 2 3

0 1 2 3 4

1 5 6 7 8

2 9 10 11 12

3 13 14 15 16

print(matrix.shape) # This will return (6, 4)

for i in range(matrix.shape[0]): # The same as range(6)

for j in range(matrix.shape[1]): # The same as range(4)

print(matrix[i, j]) # This will print every element

Nested for-Loops

• To loop through all elements of a matrix, put a for-loop inside another for-loop:

0 1 2 3

0 1 2 3 4

1 5 6 7 8

2 9 10 11 12

3 13 14 15 16

print(matrix.shape) # This will return (6, 4)

for i in range(matrix.shape[0]): # The same as range(6)

for j in range(matrix.shape[1]): # The same as range(4)

print(matrix[i, j]) # This will print every element

Nested for-Loops

• To loop through all elements of a matrix, put a for-loop inside another for-loop:

0 1 2 3

0 1 2 3 4

1 5 6 7 8

2 9 10 11 12

3 13 14 15 16

print(matrix.shape) # This will return (6, 4)

for i in range(matrix.shape[0]): # The same as range(6)

for j in range(matrix.shape[1]): # The same as range(4)

print(matrix[i, j]) # This will print every element

Nested for-Loops

• To loop through all elements of a matrix, put a for-loop inside another for-loop:

0 1 2 3

0 1 2 3 4

1 5 6 7 8

2 9 10 11 12

3 13 14 15 16

print(matrix.shape) # This will return (6, 4)

for i in range(matrix.shape[0]): # The same as range(6)

for j in range(matrix.shape[1]): # The same as range(4)

print(matrix[i, j]) # This will print every element

Nested for-Loops

• To loop through all elements of a matrix, put a for-loop inside another for-loop:

0 1 2 3

0 1 2 3 4

1 5 6 7 8

2 9 10 11 12

3 13 14 15 16

print(matrix.shape) # This will return (6, 4)

for i in range(matrix.shape[0]): # The same as range(6)

for j in range(matrix.shape[1]): # The same as range(4)

print(matrix[i, j]) # This will print every element

Nested for-Loops

• To loop through all elements of a matrix, put a for-loop inside another for-loop:

0 1 2 3

0 1 2 3 4

1 5 6 7 8

2 9 10 11 12

3 13 14 15 16

print(matrix.shape) # This will return (6, 4)

for i in range(matrix.shape[0]): # The same as range(6)

for j in range(matrix.shape[1]): # The same as range(4)

print(matrix[i, j]) # This will print every element

Nested for-Loops

• To loop through all elements of a matrix, put a for-loop inside another for-loop:

0 1 2 3

0 1 2 3 4

1 5 6 7 8

2 9 10 11 12

3 13 14 15 16

print(matrix.shape) # This will return (6, 4)

for i in range(matrix.shape[0]): # The same as range(6)

for j in range(matrix.shape[1]): # The same as range(4)

print(matrix[i, j]) # This will print every element

Nested for-Loops

• To loop through all elements of a matrix, put a for-loop inside another for-loop:

0 1 2 3

0 1 2 3 4

1 5 6 7 8

2 9 10 11 12

3 13 14 15 16

print(matrix.shape) # This will return (6, 4)

for i in range(matrix.shape[0]): # The same as range(6)

for j in range(matrix.shape[1]): # The same as range(4)

print(matrix[i, j]) # This will print every element

Nested for-Loops

• To loop through all elements of a matrix, put a for-loop inside another for-loop:

0 1 2 3

0 1 2 3 4

1 5 6 7 8

2 9 10 11 12

3 13 14 15 16

print(matrix.shape) # This will return (6, 4)

for i in range(matrix.shape[0]): # The same as range(6)

for j in range(matrix.shape[1]): # The same as range(4)

print(matrix[i, j]) # This will print every element

Nested for-Loops

• To loop through all elements of a matrix, put a for-loop inside another for-loop:

0 1 2 3

0 1 2 3 4

1 5 6 7 8

2 9 10 11 12

3 13 14 15 16

print(matrix.shape) # This will return (6, 4)

for i in range(matrix.shape[0]): # The same as range(6)

for j in range(matrix.shape[1]): # The same as range(4)

print(matrix[i, j]) # This will print every element

Nested for-Loops

• To loop through all elements of a matrix, put a for-loop inside another for-loop:

0 1 2 3

0 1 2 3 4

1 5 6 7 8

2 9 10 11 12

3 13 14 15 16

print(matrix.shape) # This will return (6, 4)

for i in range(matrix.shape[0]): # The same as range(6)

for j in range(matrix.shape[1]): # The same as range(4)

print(matrix[i, j]) # This will print every element

Nested for-Loops

• To loop through all elements of a matrix, put a for-loop inside another for-loop:

0 1 2 3

0 1 2 3 4

1 5 6 7 8

2 9 10 11 12

3 13 14 15 16

print(matrix.shape) # This will return (6, 4)

for i in range(matrix.shape[0]): # The same as range(6)

for j in range(matrix.shape[1]): # The same as range(4)

print(matrix[i, j]) # This will print every element

Nested for-Loops

• To loop through all elements of a matrix, put a for-loop inside another for-loop:

0 1 2 3

0 1 2 3 4

1 5 6 7 8

2 9 10 11 12

3 13 14 15 16

print(matrix.shape) # This will return (6, 4)

for i in range(matrix.shape[0]): # The same as range(6)

for j in range(matrix.shape[1]): # The same as range(4)

print(matrix[i, j]) # This will print every element

Nested for-Loops

• To loop through all elements of a matrix, put a for-loop inside another for-loop:

0 1 2 3

0 1 2 3 4

1 5 6 7 8

2 9 10 11 12

3 13 14 15 16

print(matrix.shape) # This will return (6, 4)

for i in range(matrix.shape[0]): # The same as range(6)

for j in range(matrix.shape[1]): # The same as range(4)

print(matrix[i, j]) # This will print every element

Nested for-Loops

• To loop through all elements of a matrix, put a for-loop inside another for-loop:

0 1 2 3

0 1 2 3 4

1 5 6 7 8

2 9 10 11 12

3 13 14 15 16

print(matrix.shape) # This will return (6, 4)

for i in range(matrix.shape[0]): # The same as range(6)

for j in range(matrix.shape[1]): # The same as range(4)

print(matrix[i, j]) # This will print every element

if-Statements

• You can control the flow of your program with if-statements. Code inside an if-

statement will run only if the given condition evaluates to True.

x = 1
y = 2

if x < y:
print("x is less than y.")

if-Statements

• You can also specify what to do if the condition is not met. You can define multiple

options for different cases.

x = 1
y = 2

if x < y:
print("x is less than y.")

elif x > y:
print("x is greater than y.")

else:
print("x is neither less than nor greater than y.")

Functions

• Functions are used when you want to run the same piece of code on different

inputs at different points in time.

• Functions act as wrappers around big algorithms so you can reuse them again and

again.

def function_name(input_arguments, go, here):

Function calculations go here

return function_output_goes_here

Call the function and store the output in a variable called result

result = function_name(1, 2, 3)

Functions

• Functions usually take in input and give you output:

result = my_function(5000)

Functions

• Functions usually take in input and give you output:

result = my_function(5000)

Function Example

• To write a function to calculate force values with F = ma, you could write:

def net_force(mass_in, acc_in):

force = mass_in*acc_in

return force

Use the function

my_mass = 10
my_accelerations = np.linspace(0, 10, 100)

my_forces = net_force(mass_in = my_mass, acc_in = my_accelerations)
print(my_forces)

Good Coding Practices

• We write code for others to be able to understand, not ourselves. Though your

future self can count as an other.

• Use clear and descriptive variable names.

• Break up complicated calculations into multiple steps.

• Comment your code as much as possible.

• Follow the standard formatting conventions from the PEP 8 style guide. There are

Python formatters out there that will reformat your code for you.

Data Analysis Basics

Importing Data from Files

• You can import data from Excel or CSV files using Pandas:

• This loads the data into a dataframe, which is similar to a dictionary. Index the

dataframe and convert the results to arrays:

import pandas as pd

Excel_data = pd.read_excel("file.xlsx")
csv_data = pd.read_csv("file.csv")

print (csv_data.columns)

time = np.array(csv_data["time (s)"])
position = np.array(csv_data["position (cm)"])
velocity = np.array(csv_data["velocity (cm/s)"])

Making Plots

• The most common plotting library is Matplotlib.

• Explore the different functions and arguments for styling your plots with Matplotlib.

You should also look up the Matplotlib documentation to find other useful functions

and plot types.

import matplotlib.pyplot as plt

plt.plot(x, y) # Line plots for fits
plt.scatter(x, y) # Scatter plots for data
plt.errorbar(x, y, yerr) # Line or scatter plots with error bars
plt.hist(x) # Histogram for displaying counts of variables

Types of Plots

Other Useful Plotting Commands

plt.figure(figsize = (16, 12)) # Set the size of your canvas

The main plotting command
You can use abbreviations for some of the keyword arguments

plt.plot(x, y, color = "blue", lw = 2, ls = "", marker = "D", ms = 12, label =
"Text to go on legend")

plt.title("Title") # Give your plot a title (do NOT do this)
plt.xlabel(r"x") # Label your x- (or y-) axis with formatted math
plt.legend(loc = "best") # Draw the legend
plt.savefig("plot.png") # Save as a PNG, JPG, PDF (before plt.show())
plt.show() # Show your plot

Fitting Polynomial Data

• The np.polyfit() function can be used to fit polynomials of the form:

• The 𝑎𝑖 are fit parameters, which are returned by the polyfit function.

𝐹 𝑥 = 𝑎𝑛𝑥
𝑛 +⋯+ 𝑎2𝑥

2 + 𝑎1𝑥 + 𝑎0

import numpy as np

fitpar = np.polyfit(x_data, y_data, deg = 4)
fitpar = np.polyfit(x, y, 4)

To include uncertainties:

fitpar, uncer = np.polyfit(x_data, y_data, order, cov = True)

Fitting Polynomial Data

• The uncertainties come from the diagonals of the covariance matrix:

• The covariance gives a measure of how much one parameter changes as another

parameter changes.

cov =
cov 𝑎0, 𝑎0 ⋯ cov 𝑎0, 𝑎𝑁

⋮ ⋱ ⋮
cov 𝑎𝑁, 𝑎0 ⋯ cov 𝑎𝑁, 𝑎𝑁

cov 𝑎, 𝑏 =
σ𝑖=0
𝑁 𝑎𝑖 − ത𝑎 𝑏𝑖 − ത𝑏

𝑁 − 1

Importing and Plotting Histogram Data

• Histograms are very useful in particle physics. Let’s try plotting one. First, load the

data from the CSV file.

• Now let’s plot it.

import pandas as pd

hist_data = pd.read_csv("Histogram.csv")
hist_y = np.array(hist_data["Counts"])

import matplotlib.pyplot as plt

counts, bins, _ = plt.hist(hist_y, bins = 100)

Fitting the Histogram Data

• The scipy.optimize.curve_fit() function lets you fit to a function of any form.

Let’s try fitting our CSV data to a Gaussian.

def gauss_fit(x, A, mu, sigma):

return A*np.exp(-0.5*((x - mu)/sigma)**2)

We can get our xdata from the plt.hist() function

guess = [1, 45, 100]

A, mu, sigma = scio.curve_fit(gauss_fit, bins[:-1], counts, p0 = guess)[0]

𝑓 𝑥 = 𝐴𝑒
−
1
2
𝑥−𝜇
𝜎

2

Plotting the Results of the Fit

• We can pass the fit parameters the curve_fit() function gave us back into the

Gaussian function we wrote.

fit_y = gauss_fit(bins, A, mu, sigma)

plt.plot(bins, fit_y, color = "red", lw = 3)

More Information

There is a Lot More to Learn

• While-loops

• Classes

• List comprehensions

• Lambda functions

• Keyword arguments

• Try-catch statements and exception handling

• Generators

• Decorators

• Namespaces and scope

• Global, local, and protected variables

• Packages and modules

• Parameters, arguments, methods, attributes, properties

Useful Resources

• StackOverflow: Answers to almost every question you could imagine.

• Codecademy: Beginner Python tutorials.

• Real Python: Comprehensive beginner Python tutorials.

• W3Schools: Convenient lists of Python functions and concepts.

• Python Tutor: Visualise Python code execution.

https://stackoverflow.com/questions/tagged/python
https://www.codecademy.com/resources/docs/python
https://realpython.com/
https://www.w3schools.com/python/default.asp
https://pythontutor.com/

Useful Tools

• IDE: Integrated development environment; graphical user interfaces

for advanced programming. Ex: VS Code, GitKraken, Atom, etc.

• Linter: A code analysis tool that can help find syntax errors and

lines of code that look suspicious. Linters can help find bugs

before you run your program.

• Debugger: Helps you find bugs after you run your program.

• Profiler: Runs through your code and times how long each part takes to

execute. This finds bottlenecks in your algorithms to help you

figure out how to optimise your code. Ex: cProfile.

• Formatter: Formats your code to be more readable and in accordance with

standard convenctions (like PEP 8). Ex: black.

Other Concepts to Learn About

• Simulations: A program that aims to recreate the physical processes of

reality. We compare simulation results with experimental

measurements.

• Monte Carlo: A specific type of simulation based on simulating huge

numbers of random processes to approximate reality.

• Parallel Computing: Opposed to serial computing, parallel computing is using

multiple cores of your CPU to do series of calculations in

parallel. This is necessary when running highly intensive

simulations or working with huge amounts of data.

• Machine Learning: A branch of AI that uses neural networks to give computers

the ability to learn from data and make predictions.

• GPUs: Graphical processing units for fast computation.

Essential Skills for Many Careers

• Programming and data analysis are essential skills for doing physics in the modern

world, no matter what field you go into.

• It can be difficult to learn, but it is worth it!

• It can open up a lot of job opportunities in the future:

• Physicist

• Research scientist

• Data analyst

• Data architect

• Systems engineer

• Software developer

• Video game developer

• Web developer

• And many more!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96

