
PHYS 144 – Error Propagation Examples

William Woodley

1. Derive an expression for uncertainty in acceleration due to gravity from
a position-time graph.

The equation for a second-order polynomial is:

f(x) = a2x
2 + a1x+ a0. (1)

The equation for position as a function of time is:

y(t) = −1

2
gt2 + v0t+ y0. (2)

Comparing (1) and (2), it is clear that a2 = −(1/2)g. Rearranging this, g is given by:

g = −2a2.

np.polyfit() gives the uncertainty of a2, δa2, which will propagate into uncertainty in
g. Using the general error propagation formula on page 33 of the lab manual, uncertainty
in g will be given by:

δg =

√(
∂g

∂a2

)2

(δa2)2. (3)

The part in the first set of brackets is a partial derivative. To compute partial deriva-
tives, treat every quantity that is not being differentiated with respect to as a constant.
Because the expression for g only contains one quantity (a2), the partial derivative will
be the same as the total derivative. Computing the derivative:(

∂g

∂a2

)
= −2. (4)

Plugging (4) into (3) and simplifying:

δg = 2δa2 .

The negative sign in (4) goes away because the partial derivative is squared in (3). The
result is that the uncertainty in g is twice the uncertainty in a2, because g is twice as
big as a2. This is how error propagation works for simple multiplication by a constant,
but it gets more complicated when you have equations with multiple quantities. See the
more difficult examples below.
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2. Derive an expression for the error in instantaneous velocity. Is error con-
stant for all values of v?

The equation for instantaneous velocity is:

v =
xn+1 − xn−1

tn+1 − tn−1

.

Assume uncertainty in time is negligible. Then, only the errors in xn+1 and xn−1 will
propagate into the error of v. From the general error propagation formula, uncertainty
in v is given by:

δv =

√(
∂v

∂xn+1

)2

δx2n+1 +

(
∂v

∂xn−1

)2

δx2n−1. (1)

Computing the derivatives: (
∂v

∂xn±1

)
=

±1

tn+1 − tn−1

, (2)

Plugging (2) into (1) and simplifying:

δv =

(
1

tn+1 − tn−1

)√
δx2n+1 + δx2n−1 . (3)

If more than one meter stick is used to measure xn, some xn values will have larger
uncertainty than others (δxn+1 and δxn−1 will not necessarily be equal), meaning the
error will not be constant for all values of v.

3. Derive an expression for uncertainty in total mechanical energy.

The equation for total mechanical energy is given by:

E = K + U,

where K is kinetic energy and U is gravitational potential energy.
From basic error propagation, the uncertainty in E is given by:

δE =
√

(δK)2 + (δU)2 , (1)

where δK is the uncertainty in kinetic energy, and δU is the uncertainty in potential
energy, both of which must be calculated. Begin with δK.

Kinetic energy is given by:
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K =
1

2
mv2,

where there is uncertainty in both m and v. Using the general error propagation formula,
δK can be calculated with:

δK =

√(
∂K

∂m

)2

(δm)2 +

(
∂K

∂v

)2

(δv)2. (2)

Computing the derivatives: (
∂K

∂m

)
=

1

2
v2,(

∂K

∂v

)
= mv,

and then substituting these into (2) and simplifying (by multiplying the first term under
the square root by m/m, and the second by 2v/2v), δK becomes:

δK =

√(
mv2

2m

)2

(δm)2 +

(
2mv2

2v

)2

(δv)2,

δK = K

√(
δm

m

)2

+

(
2δv

v

)2

, (3)

where δm is the uncertainty in the mass, and δv is the uncertainty in the magnitude of
velocity, which must be calculated.

The magnitude of the velocity is given by:

v =
√
v2x + v2y,

where there is uncertainty in both vx and vy. Using the general error propagation
formula, δv can be calculated with:

δv =

√(
∂v

∂vx

)2

(δvx)2 +

(
∂v

∂vy

)2

(δvy)2. (4)

Computing the derivatives:(
∂v

∂vx, y

)
=

1

2
(v2x + v2y)−1/2 · 2vx, y =

vx, y

v
,

and then substituting these into (4) and simplifying, δv becomes:
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δv =
1

v

√
(vxδvx)2 + (vyδvy)2 , (5)

where δvx and δvy are the uncertainties in the x and y components of the velocity. These
can be calculated using Equation (3) from the previous example:

δvx =

(
1

tn+1 − tn−1

)√
δx2n+1 + δx2n−1 , (6)

and the same for y.

Equation (6) (and the equivalent equation for y) can now be substituted into Equation
(5), which can be substituted into Equation (3), which can be substituted into Equation
(1). This completes the steps for the error propagation for kinetic energy. The value
of δK will be different for each data point, as it depends on v, which depends on x and y.

The next step is the error propagation for potential energy. Potential energy is given by:

U = mgy,

where there is uncertainty in all variables. Using the general error propagation formula,
δU can be calculated with:

δU =

√(
∂U

∂m

)2

(δm)2 +

(
∂U

∂g

)2

(δg)2 +

(
∂U

∂y

)2

(δy)2. (7)

Computing the derivatives: (
∂U

∂m

)
= gy,(

∂U

∂g

)
= my,(

∂U

∂y

)
= mg,

and then substituting these into (7) and simplifying (by multiplying each term under
the square root by mgy/mgy), δU becomes:

δU =

√(mgy
m

)2
(δm)2 +

(
mgy

g

)2

(δg)2 +

(
mgy

y

)2

(δy)2

δU = U

√(
δm

m

)2

+

(
δg

g

)2

+

(
δy

y

)2

, (8)
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where δg is the uncertainty in acceleration due to gravity. Equation (8) can now be
substituted into Equation (1). This completes the steps for the error propagation for
potential energy. The value of δU will be different for each data point, as it depends on y.

This completes the steps for the error propagation for total mechanical energy.
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