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Introduction

The purpose of this experiment was to measure the spring constant and mass of a spring.
Robert Hooke found the restoring force of a spring, F , to be:

F = −kx,

where k is the spring constant, and x is the displacement from equilibrium position. This is known as
Hooke’s Law. This experiment makes use of Hooke’s Law in a mass-spring system. The oscillations
of a mass hanging off a spring, when disturbed from its equilibrium position, are an example of
simple harmonic motion, which is defined as a type of sinusoidal motion with a given constant
period, T . For a mass-spring system, the period T can be related to the mass hung off the spring,
M , by the following formula from the lab manual [1]:

T 2 =
4π2

k

(
M +

ms

3

)
, (1)

where ms is the mass of the spring.

Experimental Method

Figure 1: A diagram of the experimental
set-up (personally drawn).

The experimental set-up consisted of a spring mounted
inside a tube that contained a meter stick, as shown in
Figure 1. The spring had a loop at the end, off of which
a mass hanger and slotted masses were hung. A mo-
tion sensor connected to a Logger Pro LabPro unit was
placed on the floor directly underneath the mass hanger
in order to record position-time data of the bottom for
the mass hanger during oscillations.

First, we hung a total mass of 0.250 kg (the sum of
the 0.050 kg mass hanger and 0.200 kg slotted masses)
from the loop in the spring. Reading from the meter
stick inside the tube, we pulled the spring down approx-
imately 2 cm, and then released it to begin the oscilla-
tory motion. After the masses had completed two full
oscillations, we clicked the ‘Collect’ button in Logger
Pro to start the collection of the position-time data.

This was repeated for masses up to 0.450 kg, going
up in 0.025 kg increments. After data was collected for
all masses, a second trial was done.
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Results

The motion sensor recorded data every 0.05 s for 5 s. Using this data, the period of oscillation, T ,
was calculated by finding the first two maxima in position, and subtracting their times, t1 and t2:

T = t2 − t1.

Two trials were done for each mass. The resulting values are shown in Table 1.
This data can be used to calculated the spring constant and the mass of the spring by linearising

Equation (1). To put this in a linear form, rearrange to solve for M while isolating k:

M = k

(
T 2

4π2

)
− ms

3
. (2)

This is now in the form y = mx+ b. In this case, plotting M vs T 2/4π2 will result in a graph with
a slope equal to the spring constant, and a y-intercept equal to −ms/3. Values of T 2/4π2 are also
shown in Table 1.

Table 1: The mass and period data as extracted from Logger Pro measurements for both trials.
M is the total mass that was hung from the spring (that of the mass hanger plus that of the slotted
masses). Uncertainties in mass were assumed to be negligible. The period was calculated from the
Logger Pro time-position data. Logger Pro took a measurement every 0.05 s, so the uncertainty in
any given time is 0.05 s. The period was calculated from the difference of two times, t1 and t2, and

so the uncertainty in period is
√
δt21 + δt22 = 0.07 s. The error propagation for T 2/4π2 is shown in

Appendix A.

Mass, M / kg
Period, T / s (± 0.07) T 2/4π2 / s2

Trial 1 Trial 2 Trial 1 Trial 2
0.250 1.16 1.18 0.034 (±0.004) 0.035 (±0.004)
0.275 1.21 1.21 0.037 (±0.004) 0.037 (±0.004)
0.300 1.25 1.25 0.040 (±0.004) 0.040 (±0.004)
0.325 1.29 1.29 0.042 (±0.005) 0.042 (±0.005)
0.350 1.33 1.32 0.044 (±0.005) 0.044 (±0.005)
0.375 1.36 1.36 0.047 (±0.005) 0.047 (±0.005)
0.400 1.39 1.39 0.049 (±0.005) 0.049 (±0.005)
0.425 1.43 1.43 0.052 (±0.005) 0.052 (±0.005)
0.450 1.46 1.46 0.054 (±0.005) 0.054 (±0.005)

Using Equation (2), the data in Table 1 was plotted in order to calculate the spring constant
and the mass of the spring. This is shown in Figure 2.

2



Figure 2: A plot of M vs T 2/4π2 using the data for both trials in Table 1. Because many of
the values between Trial 1 and Trial 2 are so similar, many points overlap. The slope of the line,
which represents the spring constant, is (10.27 ± 0.08) Nm−1, and the y-intercept, which represents
negative one third of the mass of the spring, is (-0.106 ± 0.003) kg.

Using the numpy.polyfit() function, the slope and y-intercept of the graph in Figure 2 were
calculated to be (10.27 ± 0.08) Nm−1 and (-0.106 ± 0.003) kg respectively. From Equation (2), the
slope represents the spring constant, and the y-intercept represents negative one third of the mass
of the spring. Therefore, to calculate the mass of the spring and its uncertainty, use:

ms = −3b,

δms = 3δb,

where b is the y-intercept, and δb is the uncertainty in the y-intercept. The mass of the spring,
therefore, is calculated to be (0.318 ± 0.009) kg.

Discussion

The graph in Figure 2 is linear, as expected from Equation (2). The spring constant was calculated
to be (10.27 ± 0.08) Nm−1, and the mass of the spring was calculated to be (0.318 ± 0.009) kg.
Based on the spring used, both of these numbers seem reasonable [Note: No comparison is done
here because there is no accepted or theoretical value to do a comparison with.].

Data from both Trial 1 and Trial 2 was plotted in Figure 2. Most of the data points overlap
completely, but even those that do not do have error bars that overlap, and so all of the measure-
ments taken in trial 1 are consistent with the measurements taken in trial 2. The purpose of taking
two sets of data was to increase the precision of the linear fit. If only the trial 1 data had been
used, the calculated spring constant would be (10.2 ± 0.1) Nm−1. If only the trial 2 data had been
used, it would be (10.37 ± 0.09) Nm−1. Both of these have uncertainties greater than that of the
spring constant calculated using both trials (0.08 Nm−1), showing that, although not all of the trial
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1 and trial 2 data points overlap exactly, they still help reduce the effect of random error in the
measurements.

One possible source of error comes from friction between the spring and the edge of the bottom
of the tube the spring was mounted in. Because the force of friction acts against the direction
of motion, this friction would have caused the period to be larger than it would have been if the
system were in vacuum. Therefore, due to the inverse relationship between T 2 and k in Equation
(1), this would have decreased the value of k, whereas it would have increased the value of ms.

Conclusion

The experiment was successful, as reasonable values were found for both the spring constant, k,
and the mass of the spring, ms.

Using a motion sensor and a Logger Pro LabPro unit, the positions of masses oscillating on a
spring were recorded against time, from which periods of oscillation were calculated. Using these
masses and periods, the relationship between T 2 and M for a mass oscillating on a spring with a
non-negligible spring mass was plotted, and the linear slope and y-intercept gave the spring constant,
k, of the spring to be (10.27 ± 0.08) Nm−1, and the mass of the spring, ms, to be (0.318 ± 0.009)
kg.
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Appendix A

To propagate errors in T 2/4π2, use the general error propagation formula for functions of one
variable, where the variable here is T :

δ

(
T 2

4π2

)
=

∂

∂T

(
T 2

4π2

)
δT.

Taking the derivative:

δ

(
T 2

4π2

)
=
(

1

4π2

)
2TδT.

The final equation for the uncertainty is:

δ

(
T 2

4π2

)
=
TδT

2π2
.

This is the equation that was used in Table 1 to calculate uncertainty values for T 2/4π2 for trials
1 and 2.
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